

Course Information

Course Title:	Theory of machines (620333)
Prerequisite:	Dynamics (620212)
Credit Hours:	3 credit hours (16 weeks per semester, approximately 44 contact hours)
Textbook:	Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002
References:	<ol style="list-style-type: none">Theory of machines and mechanics, by J. Uicker, G. Pennock, and J.E. Shigley, 3rd edition, 2011.Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines by R. L. Norton, 3rd edition, 1999
Website:	http://www.philadelphia.edu.jo/academics/nmusa
Course Description:	Simple mechanisms, velocity and acceleration analyses in mechanisms, force analysis in simple mechanisms, theory of gearing, gear trains, balancing of rotating masses, belt drive, and cams.
Instructors:	Dr. Nabil Musa Email: nmusa@philadelphia.edu.jo Office: Engineering Building, room E61206, ext.:2343 Office hours: Sat, Sun, Mon Tues, 12:00-13:00 Mon
Course Coordinator:	Dr. Nabil Musa Email: nmusa@philadelphia.edu.jo Office: Engineering Building, room E61206, ext.:2343 Office hours: Sat, Sun, Mon Tues, 12:00-13:00 Mon
Technology Requirements:	<ul style="list-style-type: none">Personal computer, laptop, or mobile phone.Internet Connection.Access to Philadelphia University E-Learning Portal (MS Teams and Moodle)
Learning Style:	F2F
Communication:	<ul style="list-style-type: none">Announcement: the announcements will be posted in MS Teams or Moodle on a regular basis.Email.MS Teams or Moodle chats.
Course Objectives	<ul style="list-style-type: none">Classify and understand the functions of different types of mechanisms, and understand the concepts of link, joint, pair, chain, and mobility.Perform position, velocity, and acceleration analysis of mechanisms algebraically, analytically, and graphically.Calculate the different forces acting on a simple mechanism.Design a cam profile according to a given follower motionUnderstands the theory of gearing, analysis, and design of different types of gear trains.Perform balancing of rotating masses and design a belt drive

Course Learning Outcomes (CLO) and Relation to ABET Student Outcomes		
CLOs	Outcomes	ABET PLOs
K1, K2	Classify and understand the functions of different types of mechanisms, and understand the concepts of link, joint, pair, chain, and mobility.	1
K1, K2	Perform position, velocity, and acceleration analysis of mechanisms algebraically, analytically, and graphically.	1
S3	Calculate the different forces acting on a simple mechanism.	1
K2	Design a cam profile according to a given follower motion	2
K1	Understand the theory of gearing, analyze, and design different types of gear trains.	1
K1	Perform balancing of rotating masses, and Analyze and design a belt drive	1

Grading Policy and Assessment Instruments					
Graded Item	Marks	Topic (s)	CLO(s)	Learning Portal (Teams/ Moodle/ F2F/ Others)	Week
Assignment 1	5	Simple mechanisms	K2	F2F	5
Assignment 2	5		K1-K2	F2F	13
Quiz 1	5	velocity and acceleration analyses in mechanisms	K2	F2F	4
Quiz 2	5	force analysis in simple mechanisms	K2	F2F	7
Quiz 3	5	theory of gearing, gear trains	K2, S3	F2F	12
Quiz 4	5	balancing of rotating masses	K2	F2F	14
Mid Exam	30%	Weeks 1-8	K1-K2	F2F	8
Final Exam	40%	Week 1-15	1-5	F2F	16
Total Marks	100%				
Notes:	<ul style="list-style-type: none"> Two written exams will be given. Copying homework is forbidden, any student caught copying the homework or any part of the homework will receive zero marks for that homework. Quizzes: 10-minute quizzes will be given to the students during the semester. These quizzes will cover material discussed during the previous lecture(s). Homework: Problem sets will be given to students. Homework should be solved individually and submitted before the due date. The final exam will cover all the class material. 				

Course Content: Learning Resources/ References/ Activities/ Assessment Methods						
Week	Lecture	Topic	CLOs	Learning Resources/ References/ Activities/ Assessment Method	Learning Style (F2F, Synchronous, Asynchronous)	Assessment Method
1	L1	Introduction of simple mechanisms.	-	Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
	L2	Types of links, and kinematic pairs.		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
2	L1	<ul style="list-style-type: none"> Types of joints and Kinematics pairs. Number of degrees of freedom. 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
	L2	Solving problems.		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
3	L1	Grashof criteria.		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
	L2	Solving problems (mobility, and Grashof criteria).		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
4	L1	<ul style="list-style-type: none"> Solving problems (mobility, and Grashof criteria). Quiz 1(kinematic pairs, mobility, and Grashof Criteria). 		Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines by R. L. Norton, 3rd edition,1999	F2F	
	L2	<ul style="list-style-type: none"> Position Analysis Translation and rotation Complex Motion 		Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines by R. L. Norton, 3rd edition,1999	F2F	Quiz-1
5	L1	<ul style="list-style-type: none"> Graphical position analysis of linkage. Velocity analysis. 		Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines by R. L. Norton, 3rd edition,1999	F2F	Assignment 1
	L2	<ul style="list-style-type: none"> Definition of velocity Graphical velocity analysis. Assignment 1. 		Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines by R. L. Norton, 3rd edition,1999	F2F	
6	L1	<ul style="list-style-type: none"> Instant Center of velocity. Angular velocity. 		Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines by R. L. Norton, 3rd edition,1999	F2F	
	L2	<ul style="list-style-type: none"> Angular velocity ratio. Problem-solving 		Theory of Machine. By: R.S.	F2F	

		(displacement and velocity)		Khurmi and J. K. Gupta., 2002		
7	L1	<ul style="list-style-type: none"> • Analytical solution for velocity. • Quiz 2 (displacements and velocity). 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	Quiz 2
	L2	<ul style="list-style-type: none"> • Acceleration analysis • Acceleration of any point on linkage. 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
8	L1	<ul style="list-style-type: none"> • Analytical solution for acceleration • Problem solving. 		-	F2F	
	L2	<ul style="list-style-type: none"> • Estimated Midterm exam 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
9	L1	<ul style="list-style-type: none"> • Solving Example 10.4 • Classwork 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
	L2	<ul style="list-style-type: none"> • Cam design • Type of follower motion. 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
10	L1	<ul style="list-style-type: none"> • Types of joint closure. • Problem solving. 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
	L2	<ul style="list-style-type: none"> • Types of followers • Types of Cams. 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
11	L1	<ul style="list-style-type: none"> • Problem-solving (Cams). • Type of motion constrains. 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
	L2	<ul style="list-style-type: none"> • Types of motion programs. • SVAJ diagram. 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
12	L1	<ul style="list-style-type: none"> • Double dwell Cam design. • Simple harmonic motion (SHM). • Quiz 3 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
	L2	<ul style="list-style-type: none"> • Cycloidal displacement. • Single Dwell cam design. 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	Quiz 3
13	L1	<ul style="list-style-type: none"> • Single dwell cam design choosing SVAJ function. • Assignment 2. 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
	L2	<ul style="list-style-type: none"> • Sizing the cam • Pressure angle • Radius of curvature 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	Assig nmen t 2
14	L1	<ul style="list-style-type: none"> • Problem solving (can). • The fundamental law of gearing. • Quiz 4 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
	L2	<ul style="list-style-type: none"> • Introduction to Gear and gear train. • Gear teeth, and contact ratio. • Simple gear train. 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	Quiz 4

15	L1	<ul style="list-style-type: none"> • Design of gear train. • Design of reverted compound trains. • Balancing of rotating mass, static balance. • Dynamic balance. 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
	L2	<ul style="list-style-type: none"> • Linkage balance • Problem solving. 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	
16		<ul style="list-style-type: none"> • Final exam 		Theory of Machine. By: R.S. Khurmi and J. K. Gupta., 2002	F2F	

Notes:

For Blended and F2F Courses: L1 & L2 each 1 hour.

For Online Course: L1 and L2 each 1.5 hours.

Credit Hours Distribution Report	
Learning Style	Credit Hours
F2F	32
Synchronous	0
Asynchronous	16
Total	48
Academic Honesty/ Student Conduct	<ul style="list-style-type: none"> ○ As a student at Philadelphia University, you are expected to follow the university regulations and guidelines for academic honesty/student conduct found in the student handbook. ○ This means that you should not cheat, plagiarize, and let another student use your account in LMS learning portals.
Attendance Policy	Absence from classes and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse, acceptable to and approved by the Dean of the relevant college/faculty, shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

October 2023